12. References
This page shows a list of papers that will be covered during the course. There are a lot of them!! During the lectures, the lecturers will explain which papers are Key. For Key papers, you are not necessarily expected to memorise them, just to understand the key message and be able to apply the knowledge therein.
12.1. Reviews and Background
Robert L. Galloway, Jr., “The Process and Development of Image-Guided Procedures”, http://dx.doi.org/10.1146/annurev.bioeng.3.1.83
Ziv Yaniv and Kevin Cleary, “Image-Guided Procedures: A Review”, http://yanivresearch.info/writtenMaterial/CAIMR-TR-2006-3.pdf
Tobias Sielhorst, Marco Feuerstein, Nassir Navab “Advanced Medical Displays: A Literature Review of Augmented Reality”, http://dx.doi.org/10.1109/JDT.2008.2001575
Terry Peters and Kevin Cleary, “Image-Guided Interventions: Technology Review and Clinical Applications”, http://dx.doi.org/10.1146/annurev-bioeng-070909-105249
Alison Noble, Nassir Navab and H. Becher, “Ultrasonic image analysis and image-guided interventions”, http://dx.doi.org/10.1098/rsfs.2011.0025
Alfred M. Franz, Tamas Haidegger, Wolfgang Birkfellner, Kevin Cleary, Terry M. Peters and Lena Maier-Hein, “Electromagnetic Tracking in Medicine – a Review of Technology, Validation and Applications”, http://dx.doi.org/10.1109/TMI.2014.2321777
Sylvain Bernhardt, Stéphane A. Nicolau, Luc Soler, Christophe Doignon, “The status of augmented reality in laparoscopic surgery as of 2016”, http://dx.doi.org/10.1016/j.media.2017.01.007
Long Qian, Jie Yin Wu, Simon DiMaio, Nassir Navab, Peter Kazanzides, “A Review of Augmented Reality in Robotic-Assisted Surgery”, http://dx.doi.org/10.1109/TMRB.2019.2957061
12.2. Application Examples
Edwards, D. J. Hawkes, D.L.G. Hill, D. Jewell, R. Spink, A. Strong and M. Gleeson, “Augmentation of Reality Using an Operating Microscope for Otolaryngology and Neurosurgical Guidance”, http://dx.doi.org/10.3109/10929089509105692
Alan C. F. Colchester, Jason Zhao, Kerrie S. Holton-Tainter, Christopher J. Henri, Neil Maitland, Patricia T. E. Roberts, Christopher G. Harris, Richard J.Evans, “Development and preliminary evaluation of VISLAN, a surgical planning and guidance system using intra-operative video imaging”, http://dx.doi.org/10.1016/S1361-8415(01)80006-2
Grimson, G. J. Ettinger, S. J. White, T. Lozano-Perez, W. M. Wells and R. Kikinis, “An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and Enhanced Reality Visualization”, http://dx.doi.org/10.1109/42.491415
Calvin R. Maurer, Jr., Ronald P. Gaston, Derek L. G. Hill, Michael J. Gleeson, M. Graeme Taylor, Michael R. Fenlon, Philip J. Edwards, David J. Hawkes, “AcouStick: A Tracked A-Mode Ultrasonography System for Registration in Image-Guided Surgery”, http://dx.doi.org/10.1007/10704282_104
Philip J. Edwards, Andrew P. King, Calvin R. Maurer, Jr., Darryl A. de Cunha, David J. Hawkes, Derek L. G. Hill, Ron P. Gaston, Michael R. Fenlon, “Design and Evaluation of a System for Microscope-Assisted Guided Interventions (MAGI)”, http://dx.doi.org/10.1109/42.896784
Marco Feuerstein, Thomas Mussack, Sandro M. Heining, Nassir Navab, “Intraoperative Laparoscope Augmentation for Port Placement and Resection Planning in Minimally Invasive Liver Resection”, http://dx.doi.org/10.1109/TMI.2007.907327
Xin Kang, Mahdi Azizian, Emmanuel Wilson, Kyle Wu, Aaron D. Martin, Timothy D. Kane, Craig A. Peters, Kevin Cleary, Raj Shekhar, “Stereoscopic augmented reality for laparoscopic surgery”, http://dx.doi.org/10.1007/s00464-014-3433-x
Stephen Thompson, Johannes Totz, Yi Song, Stian Johnsen, Danail Stoyanov, Sebastien Ourselin, Kurinchi Gurusamy, Crispin Schneider, Brian Davidson, David Hawkes, Matthew J Clarkson, “Accuracy Validation of an Image Guided Laparoscopy System for Liver Resection”, http://dx.doi.org/10.1117/12.2080974
Yipeng Hu, Veeru Kasivisvanathan, Lucy A. M. Simmons, Matthew J. Clarkson, Stephen A. Thompson, Taimur T. Shah, Hashim U. Ahmed, Shonit Punwani, David J. Hawkes, Mark Emberton, Caroline M. Moore, Dean C. Barratt, “Development and Phantom Validation of a 3-D-Ultrasound-Guided System for Targeting MRI-Visible Lesions During Transrectal Prostate Biopsy”, http://dx.doi.org/10.1109/TBME.2016.2582734
Gian Andrea Prevost, Benjamin Eigl, Iwan Paolucci, Tobias Rudolph, Matthias Peterhans, Stefan Weber, Guido Beldi, Daniel Candinas, Anja Lachenmayer, “Efficiency, Accuracy and Clinical Applicability of a New Image-Guided Surgery System in 3D Laparoscopic Liver Surgery”, https://doi.org/10.1007/s11605-019-04395-7
Huoling Luo, Dalong Yin, Shugeng Zhang, Deqiang Xiao, Baochun He, Fanzheng Meng, Yanfang Zhang, Wei Cai, Shenghao He, Wenyu Zhang, Qingmao Hu, Hongrui Guo, Shuhang Liang, Shuo Zhou, Shuxun Liu, Linmao Sun, Xiao Guo, Chihua Fang, Lianxin Liu, Fucang Jia, “Augmented reality navigation for liver resection with a stereoscopic laparoscope”, https://doi.org/10.1016/j.cmpb.2019.105099
Egidijus Pelanis, Andrea Teatini, Benjamin Eigl, Alois Regensburger, Amilcar Alzaga, Rahul Prasanna Kumar, Tobias Rudolph, Davit L. Aghayan, Carina Riediger, Niclas Kvarnström, Ole Jakob Elle, Bjørn Edwin, “Evaluation of a novel navigation platform for laparoscopic liver surgery with organ deformation compensation using injected fiducials”, https://doi.org/10.1016/j.media.2020.101946
Oleksandra V. Ivashchenko, Koert F.D. Kuhlmann, Ruben van Veen, Bas Pouw, Niels F. M. Kok, Nikie J. Hoetjes, Jasper N. Smit, Elisabeth G. Klompenhouwer, Jasper Nijkamp, Theodoor J. M.Ruers, “CBCT-based navigation system for open liver surgery: Accurate guidance toward mobile and deformable targets with a semi-rigid organ approximation and electromagnetic tracking of the liver”, https://doi.org/10.1002/mp.14825
12.3. Imaging
Daniel Elson, Guang-Zhong Yang, “The Principles and Role of Medical Imaging in Surgery”, http://dx.doi.org/10.1007/978-3-540-71915-1_39
12.4. Segmentation
Tobias Heimann, Hans-Peter Meinzer, “Statistical shape models for 3D medical image segmentation”, http://dx.doi.org/10.1016/j.media.2009.05.004
Mariano Cabezasa, Arnau Oliver, Xavier Lladó, Jordi Freixenet, Meritxell Bach Cuadrab, “A review of atlas-based segmentation for magnetic resonance brain images”, https://doi.org/10.1016/j.cmpb.2011.07.015
Jonathon Schlens, “A Tutorial on Principal Component Analysis”, https://https://arxiv.org/abs/1404.1100
Olaf Ronneberger, Philipp Fischer and Thomas Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, http://dx.doi.org/10.1007/978-3-319-24574-4_28
Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F. Jaeger, Simon Kohl, Jakob Wasserthal, Gregor Kohler, Tobias Norajitra, Sebastian Wirkert, and Klaus H. Maier-Hein, “nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation”, https://arxiv.org/pdf/1809.10486.pdf
Amber L. Simpson et. al., “A large annotated medical image dataset for the development and evaluation of segmentation algorithms”, https://arxiv.org/abs/1902.09063
12.5. Manual Registration
Philip Pratt, Erik Mayer, Justin Vale, Daniel Cohen, Eddie Edwards, Ara Darzi and Guang-Zhong Yang, “An effective visualisation and registration system for image-guided robotic partial nephrectomy”, https://doi.org/10.1007/s11701-011-0334-z
12.6. Point-Based Registration
Arun, T. S. Huang, S. D. Blostein, “Least-Squares Fitting of Two 3-D Point Sets”, http://dx.doi.org/10.1109/TPAMI.1987.4767965
Berthold K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions”, http://dx.doi.org/10.1364/JOSAA.4.000629
Maurer, Calvin, McCrory, Jennifer, Fitzpatrick, J. Michael, “Estimation of accuracy in localizing externally attached markers in multimodal volume head images”, http://dx.doi.org/10.1117/12.154535
Calvin R. Maurer, Jr., J. Michael Fitzpatrick, Matthew Y. Wang, Robert L. Galloway, Jr., Robert J. Maciunas and George S. Allen, “Registration of Head Volume Images Using Implantable Fiducial Markers”, http://dx.doi.org/10.1109/42.611354
Eggert, A. Lorusso, R. B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms”, http://dx.doi.org/10.1007/s001380050048
Michael Fitzpatrick, Jay B. West, Calvin R. Maurer, Jr., “Predicting Error in Rigid-Body Point-Based Registration”, http://dx.doi.org/10.1109/42.736021
Batchelor, J.M. Fitzpatrick, “A study of the anisotropically weighted procrustes problem [optical image-guided surgery application]”, https://doi.org/10.1109/MMBIA.2000.852380
Michael Fitzpatrick, Jay B. West, “The Distribution of Target Registration Error in Rigid-Body Point-Based Registration”, http://dx.doi.org/10.1109/42.952729
Wiles AD, Likholyot A, Frantz DD, Peters TM., “A statistical model for point-based target registration error with anisotropic fiducial localizer error”, https://doi.org/10.1109/TMI.2007.908124
Reuben R. Shamir, Leo Joskowicz, Sergey Spektor and Yigal Shoshan, “Localization and registration accuracy in image guided neurosurgery: a clinical study”, http://dx.doi.org/10.1007/s11548-008-0268-8
MH Moghari, P Abolmaesumi, “Distribution of target registration error for anisotropic and inhomogeneous fiducial localization error”, https://doi.org/10.1109/TMI.2009.2020751
Fitzpatrick, J. Michael, “Fiducial registration error and target registration error are uncorrelated”, http://dx.doi.org/10.1117/12.813601
A Danilchenko, JM Fitzpatrick, “General approach to first-order error prediction in rigid point registration” , https://doi.org/10.1109/TMI.2010.2091513
Stephen Thompson, Graeme Penney, Prokar Dasgupta, David Hawkes, “Improved Modelling of Tool Tracking Errors by Modelling Dependent Marker Errors”, https://doi.org/10.1109/TMI.2012.2216890
Claudius Conrad, Matteo Fusaglia, Matthias Peterhans, Huanxiang Lu, Stefan Weber, Brice Gayet, “Augmented Reality Navigation Surgery Facilitates Laparoscopic Rescue of Failed Portal Vein Embolization” https://doi.org/10.1016/j.jamcollsurg.2016.06.392
Elvis C. S. Chen, Burton Ma, Terry M. Peters, “Contact-less stylus for surgical navigation: registration without digitization”, https://doi.org/10.1007/s11548-017-1576-7
12.7. Surface-Based Registration
Paul J. Besl and Neil D. McKay, “A Method for Registration of 3-D Shapes”, http://dx.doi.org/10.1109/34.121791
Zhengyou Zhang, “Iterative Point Matching for Registration of Free-Form Curves and Surfaces “, https://doi.org/10.1007/BF01427149
Lena Maier-Hein, Alfred M. Franz, Thiago R. dos Santos, Mirko Schmidt, Markus Fangerau, Hans-Peter Meinzer, J. Michael Fitzpatrick, “Convergent Iterative Closest-Point Algorithm to Accomodate Anisotropic and Inhomogenous Localization Error”, http://dx.doi.org/10.1109/TPAMI.2011.248
Ozan Oktay, Li Zhang, Tommaso Mansi, Peter Mountney, Philip Mewes, Stéphane Nicolau, Luc Soler, Christophe Chef d’hotel, “Biomechanically Driven Registration of Pre- to Intra-Operative 3D Images for Laparoscopic Surgery”, https://doi.org/10.1007/978-3-642-40763-5_1
Jiaolong Yang, Hongdong Li, Dylan Campbell and Yunde Jia, “Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration”, http://dx.doi.org/10.1109/TPAMI.2015.2513405
Matteo Fusaglia, Hanspeter Hess, Marius Schwalbe, Matthias Peterhans, Pascale Tinguely, Stefan Weber, Huanxiang Lu, “A clinically applicable laser-based image-guided system for laparoscopic liver procedures”, https://doi.org/10.1007/s11548-015-1309-8
12.8. Tracking Systems
Ramin Shahidi, Michael R. Bax, Calvin R. Maurer, Jr., Jeremy A. Johnson, Eric P. Wilkinson, Bai Wang, Jay B. West, Martin J. Citardi, Kim H. Manwaring, and Rasool Khadem, **”Implementation, Calibration and Accuracy Testing of an Image-Enhanced Endoscopy System”, http://dx.doi.org/10.1109/TMI.2002.806597
Frantz, A. D. Wiles, S. E. Leis and S. R. Kirsch, “Accuracy assessment protocols for electromagnetic tracking systems”, http://dx.doi.org/10.1088/0031-9155/48/14/314
Andrew D. Wiles, David G. Thompson and Donald D. Frantz, “Accuracy assessment and interpretation for optical tracking systems”, http://dx.doi.org/10.1117/12.536128
Jay B. West, Calvin R. Maurer, Jr., “Designing Optically Tracked Instruments for Image-Guided Surgery”, http://dx.doi.org/10.1109/TMI.2004.825614
Johann B. Hummel, Michael R. Bax, Michael L. Figl, Yan Kang, Calvin Maurer Jr., Wolfgang W. Birkfellner, Helmar Bergmann and Ramin Shahidi, “Design and application of an assessment protocol for electromagnetic tracking systems”, https://aapm.onlinelibrary.wiley.com/doi/full/10.1118/1.1944327
A Chris Heller, Arun P. Amar, Charles Y. Liu, Michael L.J. Apuzzo, “Surgery of the Mind and Mood: A Mosaic of Issues in Time and Evolution”, https://academic.oup.com/neurosurgery/article/59/4/720/2559224
Maier-Hein, A. M. Franz, W. Birkfellner, J. Hummel, I. Gergel, I. Wegner, and H.-P. Meinzer, “Standardized assessment of new electromagnetic field generators in an interventional radiology setting”, http://dx.doi.org/10.1118/1.4712222
Ester Bonmati, Yipeng Hu, Kurinchi Gurusamy, Brian Davidson, Stephen P. Pereira, Matthew J. Clarkson, Dean C. Barratt, “Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound” http://dx.doi.org/10.1007/978-3-319-54057-3_4
Guofang Xiao, Ester Bonmati, Stephen Thompson, Joe Evans, John Hipwell, Daniil Nikitichev, Kurinchi Gurusamy, Sébastien Ourselin, David J Hawkes, Brian Davidson, Matthew J Clarkson “Electromagnetic tracking in image‐guided laparoscopic surgery: Comparison with optical tracking and feasibility study of a combined laparoscope and laparoscopic ultrasound system”, https://doi.org/10.1002/mp.13210
12.9. Calibration
Martin A. Fischler, Robert C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, https://doi.org/10.1145/358669.358692
Roger Y. Tsai, “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses”, http://dx.doi.org/10.1109/JRA.1987.1087109
Roger Y. Tsai and Reimar K. Lenz, “A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration”, http://dx.doi.org/10.1109/70.34770
Wolfgang Birkfellner, Franz Watzinger, Felix Wanschitz, Rolf Ewers, Helman Bergmann, “Calibration of Tracking Systems in a Surgical Environment”, http://dx.doi.org/10.1109/42.736028
Zhengyou Zhang, “A Flexible New Technique for Camera Calibration”, http://dx.doi.org/10.1109/34.888718
Laurence Mercier, Thomas Lango, Frank Lindseth and D. Louis Collins, **”A Review of Calibration Techniques for Freehand 3-D Ultrasound Systems.” http://dx.doi.org/10.1016/j.ultrasmedbio.2004.11.015
Po-Wei Hsu, Richard W. Prager, Andrew H. Gee and Graham M. Treece, “Freehand 3D Ultrasound Calibration: A Review”, http://dx.doi.org/10.1007/978-3-540-68993-5_3
Abed Malti, Joao Pedro Barreto, “Hand-eye and radial distortion calibration for rigid endoscopes”, http://dx.doi.org/10.1002/rcs.1478
Andras Lasso, Tamas Heffter, Adam Rankin, Csaba Pinter, Tamas Ungi, Gabor Fichtinger, “PLUS: Open-Source Toolkit for Ultrasound-Guided Intervention Systems”, http://dx.doi.org/10.1109/TBME.2014.2322864
Ziv Yaniv, “Which pivot calibration?”, http://dx.doi.org/10.1117/12.2081348
Stephen Thompson, Danail Stoyanov, Crispin Schneider, Kurinchi Gurusamy, Sébastien Ourselin, Brian Davidson, David Hawkes and Matthew J. Clarkson, “Hand–eye calibration for rigid laparoscopes using an invariant point”, http://dx.doi.org/10.1007/s11548-016-1364-9
Jan Heller, Michal Havlena and Tomas Pajdla, “Globally Optimal Hand-Eye Calibration Using Branch-and-Bound”, http://dx.doi.org/10.1109/TPAMI.2015.2469299
Isabella Morgan, Uditha Jayarathne, Adam Rankin, Terry M. Peters and Elvis C. S. Chen, “Hand-eye calibration for surgical cameras: a Procrustean Perspective-n-Point solution”, http://dx.doi.org/10.1007/s11548-017-1590-9
Buton Ma, Niloofar Banihaveb, Joy Choi, Elvis C. S. Chen, Amber L. Simpson, “Is pose-based pivot calibration superior to sphere fitting?”, http://dx.doi.org/10.1117/12.2256050
12.10. Visualisation And Multi-Modal Interaction
Norman, “The design of everyday things.”, Basic Books.
Hazlehurst, B., McMullen, C. K., & Gorman, P. N., “Distributed cognition in the heart room: how situation awareness arises from coordinated communications during cardiac surgery.”, https://www.sciencedirect.com/science/article/pii/S1532046407000081
Wickens, C. D., “Multiple resources and mental workload”, https://doi.org/10.1518/001872008X288394
Blandford, A., and Attfield, S., “Interacting with information”, https://doi.org/10.2200/S00227ED1V01Y200911HCI006
Christoph Bichlmeier, Felix Wimmer, Sandro Michael Heining and Nassir Navab, “Contextual Anatomic Mimesis Hybrid In-Situ Visualization Method for Improving Multi-Sensory Depth Perception in Medical Augmented Reality”, http://dx.doi.org/10.1109/ISMAR.2007.4538837
Christian Hansen, Jan Wieferich, Felix Ritter, Christian Rieder, Heinz-Otto Peitgen, “Illustrative visualization of 3D planning models for augmented reality in liver surgery”, http://dx.doi.org/10.1007/s11548-009-0365-3
Benjamin J. Dixon, Michael J. Daly, Harley Chan, Allan D. Vescan, Ian J. Witterick, Jonathan C. Irish “Surgeons blinded by enhanced navigation: the effect of augmented reality on attention”, https://dx.doi.org/10.1007/s00464-012-2457-3
Marta Kersten-Oertel, Pierre Jannin and D. Louis Collins, “The state of the art of visualization in mixed reality image-guided surgery”, http://dx.doi.org/10.1016/j.compmedimag.2013.01.009
Marta Kersten-Oertel, Ian Gerard, Simon Drouin, Kelvin Mok, Denis Sirhan, David S. Sinclair, D. Louis Collins, “Augmented reality in neurovascular surgery: feasibility and first uses in the operating room”, http://dx.doi.org/10.1007/s11548-015-1163-8
Hani J Marcus, Philip Pratt, Archie Hughes-Hallett, Thomas P Cundy, Adam P Marcus, Guang-Zhong Yang, Ara Darzi, Dipankar Nandi, “Comparative Effectiveness and Safety of Image Guidance Systems in Neurosurgery: A Preclinical Randomized Study”, http://dx.doi.org/10.3171/2014.10.JNS141662
Berndt, E., Furniss, D., & Blandford, A, “Learning Contextual Inquiry and Distributed Cognition: a case study on technology use in anaesthesia”, https://link.springer.com/article/10.1007/s10111-014-0314-y
Stephen Thompson, Crispin Schneider, Michele Bosi, Kurinchi Gurusamy, Sébastien Ourselin, Brian Davidson, David Hawkes, Matthew J Clarkson, “In vivo estimation of target registration errors during augmented reality laparoscopic surgery”, https://dx.doi.org/10.1007/s11548-018-1761-3
Dilley, James W. R., Hughes-Hallett, Archie, Pratt, Philip J., Pucher, Philip H., Camara, Mafalda, Darzi, Ara W., Mayer, Erik K., “Perfect Registration Leads to Imperfect Performance A Randomized Trial of Multimodal Intraoperative Image Guidance”. http://dx.doi.org/10.1097/SLA.0000000000002793
12.11. Human Computer Interaction
Beyer, H., Holtzblatt, K., “Contextual design. interactions”, https://dl.acm.org/doi/fullHtml/10.1145/291224.291229
Sandra G. Hart, “NASA-Task Load Index (NASA-TLX); 20 Years Later”, https://doi.org/10.1177/154193120605000909
Hazlehurst, B., McMullen, C. K., Gorman, P. N, “ Distributed cognition in the heart room: how situation awareness arises from coordinated communications during cardiac surgery.”, https://doi.org/10.1016/j.jbi.2007.02.001
Sylvain Tourancheau, Mårten Sjöström, Roger Olsson, Anders Persson, Thomas Ericson, Johan Rudling, Bengt Norén, “Subjective evaluation of user experience in interactive 3D visualization in a medical context”, https://doi.org/10.1117/12.910828
Mewes A, Hensen B, Wacker F, Hansen C. “Touchless interaction with software in interventional radiology and surgery: a systematic literature review.”, https://dx.doi.org/10.1007/s11548-016-1480-6
Blandford, A., Furniss, D., & Makri, S., “Qualitative HCI research: Going behind the scenes.”, https://doi.org/10.2200/S00706ED1V01Y201602HCI034
Sean, Cronin, Gavin Doherty. “Touchless Computer Interfaces in Hospitals: A Review.”, http://dx.doi.org/10.1177/1460458217748342
Gavin Wheeler, Shujie Deng, Kuberan Pushparajah, Julia Schnabel, John Simpson, Alberto Gomez Herrero, “A Virtual Linear Measurement System for Accurate Quantification of Medical Images”, http://dx.doi.org/10.1049/HTL.2019.0074
Hatscher, B., Mewes, A., Pannicke, E. et al., “Touchless scanner control to support MRI-guided interventions”, https://dx.doi.org/10.1007/s11548-019-02058-1
Sharp, H., Preece, J. & Rogers , “Interaction Design”, Wiley.
12.12. Graphics
William E. Lorensen, Harvey E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm”, https://doi.org/10.1145/37402.37422
William J. Schroeder, Jonathan A. Zarga, William E. Lorensen, “Decimation of Triangle Meshes”, https://doi.org/10.1145/133994.134010
12.13. Augmented Reality
Paul Milgram, David Drascic, Julius J. Grodski, Anu Restogi, Shumin Zhai, Chin Zhou, “Merging Real and Virtual Worlds”, http://dx.doi.org/10.1117/12.197321
Tobias Sielhorst, Christoph Bichlmeier and Sandro Michael Heining, and Nassir Navab, “Depth Perception – A Major Issue in Medical AR: Evaluation Study by Twenty Surgeons”, https://doi.org/10.1007/11866565_45
Stéphane Nicolau, Luc Soler, Didier Mutter, Jacques Marescaux, “Augmented reality in laparoscopic surgical oncology”, http://dx.doi.org/10.1016/j.suronc.2011.07.002
Francesco Volonte´, Francois Pugin, Pascal Bucher, Maki Sugimoto, Osman Ratib, Philippe Morel, “Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion”, http://dx.doi.org/10.1007/s00534-011-0385-6
George Stetten, Bing Wu, Roberta Klatzky, John Galeotti, Mel Siegel, Randy Lee, Francis Mah, Andrew Eller, Joel Schuman, Ralph Hollis, “Hand-Held Force Magnifier for Surgical Instruments”, https://doi.org/10.1007/978-3-642-21504-9_9
Benjamin J. Dixon, Michael J. Daly, Harley Chan, Allan D. Vescan, Ian J. Witterick, Jonathan C. Irish, “Surgeons blinded by enhanced navigation: the effect of augmented reality on attention”, http://dx.doi.org/10.1007/s00464-012-2457-3
John P. McIntire, Paul R. Havig, Eric E. Geiselman, “Stereoscopic 3D displays and human performance: A comprehensive review”, http://dx.doi.org/10.1016/j.displa.2013.10.004
Rong Wang, Zheng Geng, Zhaoxing Zhang, Renjing Pei, Xiangbing Meng, “Autostereoscopic augmented reality visualization for depth perception in endoscopic surgery”, http://dx.doi.org/10.1016/j.displa.2017.03.003
Daipayan Guha, Naif M. Alotaibi, Nhu Nguyen, Shaurya Gupta, Christopher McFaul, Victor X.D. Yang, “Augmented Reality in Neurosurgery: A Review of Current Concepts and Emerging Applications”, https://doi.org/10.1017/cjn.2016.443
David Black, Christian Hansen, Arya Navabi, Ron Kikinis, Horst Hahn, “A Survey of auditory display in image-guided interventions”, https://dx.doi.org/10.1007/s11548-017-1547-z
James W. R. Dilley, Archie Hughes-Hallett, Philip J. Pratt, Philip H. Pucher, Mafalda Camara, Ara W. Darzi and Erik K. Mayer, “Perfect Registration Leads to Imperfect Performance”, http://dx.doi.org/10.1097/SLA.0000000000002793
Javad Fotouhi, Arian Mehrfard, Tianyu Song, Alex Johnson M.D., Greg Osgood M.D., Mathias Unberath, Mehran Armand, and Nassir Navab, “Spatiotemporal-Aware Augmented Reality: Redefining HCI in Image-Guided Therapy”, https://arxiv.org/abs/2003.02260
Yamid Espinel, Erol Özgür, Lilian Calvet, Bertrand Le Roy, Emmanuel Buc & Adrien Bartoli, “Combining Visual Cues with Interactions for 3D–2D Registration in Liver Laparoscopy”, https://doi.org/10.1007/s10439-020-02479-z
12.14. Others
Unifying terminology
Giminez et al., “Definitions of Computer-Assisted Surgery and Intervention, Image-Guided Surgery and Intervention, Hybrid Operating Room, and Guidance Systems”, https://dx.doi.org/10.1097/AS9.0000000000000021
This study shows that the majority of bile duct injuries are due to the inability to identify anatomy. Can image guidance fix this?
Lawrence W. Way, Lygia Stewart, Walter Gantert, Kingsway Liu, Crystine M. Lee, Karen Whang, John G. Hunter, “Causes and Prevention of Laparoscopic Bile Duct Injuries Analysis of 252 Cases From a Human Factors and Cognitive Psychology Perspective”, https://doi.org/10.1097/01.SLA.0000060680.92690.E9
Here’s a reminder that anatomy is variable and that there is not necessarily consensus on what’s what.
Schnelldorfer T1, Sarr MG, Adams DB. “What is the duct of Luschka?–A systematic review.”, https://dx.doi.org/10.1007/s11605-011-1802-5
First X-rays:
Roentgen, “On A New Kind Of Rays”, https://www.jstor.org/stable/1623595
First surgery:
Cox and R. C. Kirkpatrick, “The New Photography With A Report Of A Case In Which A Bullet Was Photographed In The Leg”, http://www.canadiana.ca/view/oocihm.8_05178_93/3?r=0&s=1
Stereotactic frame:
Horsley, R. H. Clarke, “The structure and functions of the cerebellum examined by a new method”, https://doi.org/10.1093/brain/31.1.45
Frameless stereotaxy in microscope:
Roberts, J. W. Strohbehn, J. F. Hatch, W. Murray and H. Kettenberger, “A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope”, https://doi.org/10.3171/jns.1986.65.4.0545
First surgical planning:
Peters T.M., Clark J., Pike B., Drangova M., Olivier A., “Stereotactic Surgical Planning with Magnetic Resonance Imaging, Digital Subtraction Angiography and Computed Tomography”, https://doi.org/10.1159/000100679
Peters, J. A. Clark, G. B. Pike, C. Henri, L. Collins, D. Leksell and O. Jeppsson, “Stereotactic neurosurgery planning on a personal-computer-based work station”, https://doi.org/10.1007/BF03168023
First 4-quadrant view:
Galloway, C. A. Edwards, J. T. Lewis and R. J. Maciunas, “Image display and surgical visualization in interactive image-guided neurosurgery”, https://doi.org/10.1117/12.143712
Papers on Evaluation of systems:
McCulloch et. al, “No surgical innovation without evaluation: the IDEAL recommendations”, https://doi.org/10.1016/S0140-6736(09)61116-8
Eszter Somogyi-Ganss, Howard I. Holmes and Asbjørn Jokstad, “Accuracy of a novel prototype dynamic computer-assisted surgery system”, http://dx.doi.org/10.1109/10.1111/clr.12414
Stephen Thompson, Graeme Penney, Michele Billia, Ben Challacombe, David Hawkes, Prokar Dasgupta, “Design and evaluation of an image‐guidance system for robot‐assisted radical prostatectomy”, https://doi.org/10.1111/j.1464-410X.2012.11692.x
Ramya Balachandran, J. Michael Fitzpatrick, and Robert F. Labadie, “Accuracy of Image-guided Surgical Systems at the Lateral Skull Base as Clinically Assessed Using Bone-Anchored Hearing Aid Posts as Surgical Targets”, https://dx.doi.org/10.1097%2FMAO.0b013e3181859a08
SciKit-Surgery:
Thomson, T. Dowrick, M. Ahmad, G. Xiao, B. Koo, E. Bonmati-Coll, K. Kahl, M. J. Clarkson, “SciKit-Surgery: compact libraries for surgical navigation”, https://doi.org/10.1007/s11548-020-02180-5
Lego Tutorial:
Ozgur Guler and Ziv Yaniv, “Image-guided navigation: A cost effective practical introduction using the image-guided surgery toolkit (IGSTK)”, https://dx.doi.org/10.1109/EMBC.2012.6347375
Surgineering:
Siewerdsen, et al, “Surgineering: curriculum concept for experiential learning in upper‑level biomedical engineering”, https://doi.org/10.1007/s11548-019-02094-x