MPHY0026 Logo
  • 1. Background
  • 2. Imaging
  • 3. Segmentation
    • 3.1. Segmentation and Modelling
    • 3.2. Statistical Shape Models
  • 4. Tracking
  • 5. Calibration
  • 6. Registration
  • 7. Graphics
  • 8. Augmented Reality
  • 9. Visualisation And Multi-Modal Interaction
  • 10. Human Computer Interaction (HCI)
  • 11. Simulation
  • 12. References
  • 13. Additional Resources
  • 14. Python Setup
  • 15. Jupyter Notebooks
  • 16. Workshops
MPHY0026
  • 3. Segmentation
  • View page source

3. Segmentation

  • 3.1. Segmentation and Modelling
    • 3.1.1. What is Segmentation?
    • 3.1.2. Its a BIG field
    • 3.1.3. Pixel-Based Methods
      • 3.1.3.1. Image Thresholding
      • 3.1.3.2. Region growing
      • 3.1.3.3. K-Means
    • 3.1.4. Atlas-Based methods
    • 3.1.5. Model-Based Methods
    • 3.1.6. Neural Network Based Methods
      • 3.1.6.1. Convolutional Neural Networks
      • 3.1.6.2. Combining Neural Networks and Manual Annotation
    • 3.1.7. Specific Challenges for CAS
    • 3.1.8. What Tools Can I Use?
    • 3.1.9. Commercial Services Exist
    • 3.1.10. Segmentation of Pre-Op data
    • 3.1.11. Segmentation of Intra-Op data
  • 3.2. Statistical Shape Models
    • 3.2.1. Model Formulation
    • 3.2.2. Workshop 3
    • 3.2.3. Active Shape Models
Previous Next

© Copyright 2019, University College London.

Built with Sphinx using a theme provided by Read the Docs.